Wednesday, October 19, 2016

Eksponensiële Smoothing Beter As Moving Average

Vooruitskatting deur gladstrykingstegnieke Hierdie webwerf is 'n deel van die JavaScript E-laboratoriums leer voorwerpe vir besluitneming. Ander JavaScript in hierdie reeks is verdeel onder verskillende gebiede van aansoeke in die menu artikel op hierdie bladsy. 'N tyd-reeks is 'n reeks waarnemings wat bestel betyds. Inherent in die versameling van data geneem met verloop van tyd is 'n vorm van ewekansige variasie. Daar bestaan ​​metodes vir die vermindering van van die kansellasie van die effek as gevolg van ewekansige variasie. Gebruikte tegnieke is glad. Hierdie tegnieke, wanneer dit behoorlik toegepas word, blyk duidelik die onderliggende tendense. Tik die tydreeks Ry-wyse in volgorde, vanaf die linker-boonste hoek, en die parameter (s), dan op die Bereken knoppie vir die verkryging van een tydperk lig vooruitskatting. Leeg bokse is nie ingesluit in die berekeninge, maar nulle is. In die begin van jou data om te beweeg van sel tot sel in die data-oorsig gebruik die Tab-sleutel nie arrow of betree sleutels. Kenmerke van tydreekse, wat geopenbaar kan word deur die ondersoek van die grafiek. met die geskatte waardes, en die residue gedrag, toestand voorspelling modelle. Bewegende gemiddeldes: bewegende gemiddeldes rang onder die gewildste tegnieke vir die preprocessing van tydreekse. Hulle word gebruik om ewekansige wit geraas filter uit die data, om die tydreeks gladder te maak of selfs om sekere inligting komponente vervat in die tydreeks te beklemtoon. Eksponensiële Smoothing: Dit is 'n baie gewilde skema om 'n reëlmatige Tyd Reeks produseer. Terwyl dit in Bewegende Gemiddeldes die afgelope waarnemings word dieselfde gewig, eksponensiële Smoothing ken eksponensieel afneem gewigte as die waarneming ouer. Met ander woorde, is Onlangse waarnemings gegee relatief meer gewig in vooruitskatting as die ouer waarnemings. Double Eksponensiële Smoothing is beter op tendense hantering. Drie Eksponensiële Smoothing beter te hanteer parabool tendense. 'N exponenentially geweeg bewegende gemiddelde met 'n glad konstante a. ooreenstem rofweg 'n eenvoudige bewegende gemiddelde lengte (bv tydperk) n, waar n en N verwant deur: 'n 2 / (N1) of N (2 - a) / n. So, byvoorbeeld, 'n exponenentially geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,1 sou rofweg ooreen met 'n 19 dag bewegende gemiddelde. En 'n 40-dag eenvoudig bewegende gemiddelde sou rofweg ooreen met 'n eksponensieel geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,04878. Holts Lineêre Eksponensiële Smoothing: Veronderstel dat die tydreeks is nie-seisoenale maar wel vertoon tendens. Holts metode skat beide die huidige vlak en die huidige tendens. Let daarop dat die eenvoudige bewegende gemiddelde is spesiale geval van die eksponensiële gladstryking deur die oprigting van die tydperk van die bewegende gemiddelde van die heelgetal deel van (2-Alpha) / Alpha. Vir die meeste sake-data 'n Alpha parameter kleiner as 0.40 is dikwels doeltreffend. Dit kan egter 'n mens 'n rooster op soek na die parameter ruimte uit te voer, met 0,1-0,9, met inkremente van 0.1. Toe het die beste alfa die kleinste gemiddelde absolute fout (MA Fout). Hoe om 'n paar glad metodes te vergelyk: Alhoewel daar numeriese aanwysers vir die beoordeling van die akkuraatheid van die voorspelling tegniek, die mees benadering is in die gebruik van visuele vergelyking van verskeie voorspellings oor die akkuraatheid daarvan te evalueer en kies tussen die verskillende vooruitskatting metodes. In hierdie benadering, moet 'n mens stip op dieselfde grafiek die oorspronklike waardes van 'n tydreeks veranderlike en die voorspelde waardes van verskillende vooruitskatting metodes (met behulp van, bv Excel), dus 'n visuele vergelyking fasilitering. Jy kan hou die gebruik van die verlede Voorspellings deur gladstrykingstegnieke JavaScript om die verlede voorspel waardes gebaseer op gladstrykingstegnieke dat slegs enkele parameter gebruik te verkry. Holt, en winters metodes gebruik twee en drie parameters, onderskeidelik, dus is dit nie 'n maklike taak om die optimale, of selfs naby optimale waardes kies deur probeer-en foute vir die parameters. Die enkele eksponensiële gladstryking beklemtoon die kort reeks perspektief dit stel die vlak van die laaste waarneming en is gebaseer op die voorwaarde dat daar geen tendens. Die lineêre regressie, wat 'n lyn van kleinste kwadrate op die historiese data (of omskep historiese data) pas, stel die lang reeks, wat gekondisioneer op die basiese tendens. Holts lineêre eksponensiële gladstryking vang inligting oor onlangse tendens. Die parameters in Holts model is vlakke-parameter wat moet verminder word wanneer die hoeveelheid data wat variasie is groot, en tendense-parameter moet verhoog word indien die onlangse tendens rigting word ondersteun deur die oorsaaklike paar faktore. Korttermyn vooruitskatting: Let daarop dat elke JavaScript op hierdie bladsy bied 'n een-stap-ahead skatting. Om 'n twee-stap-ahead voorspelling te kry. eenvoudig die geskatte waarde toevoeg tot die einde van jou tydreeksdata en kliek dan op dieselfde Bereken knoppie. Jy kan hierdie proses herhaal vir 'n paar keer om die nodige kort termyn verkry forecasts. Simple Vs. Eksponensiële Bewegende Gemiddeldes bewegende gemiddeldes is meer as die studie van 'n ry getalle in opeenvolgende orde. Vroeë beoefenaars van tydreeksanalise was eintlik meer bekommerd oor individuele nommers tydreekse as wat hulle was met die interpolasie van daardie data. Interpolasie. in die vorm van waarskynlikheid teorieë en ontleding, het veel later, as patrone ontwikkel en korrelasies ontdek. Sodra verstaan, verskeie gevormde kurwes en lyne is getrek langs die tydreeks in 'n poging om te voorspel waar die datapunte te gaan. Dit is nou beskou as basiese metodes wat tans gebruik word deur tegniese ontleding handelaars. Kartering analise kan teruggevoer word na 18de eeu Japan, nog hoe en wanneer bewegende gemiddeldes vir die eerste keer toegepas op markpryse bly 'n raaisel. Dit is oor die algemeen verstaan ​​so eenvoudig bewegende gemiddeldes (SMA) lank gebruik voordat eksponensiële bewegende gemiddeldes (EMA), want EMA is gebou op SMA raamwerk en die SMA kontinuum is makliker verstaan ​​vir die plot en die dop. (Wil jy 'n bietjie agtergrond lees Kyk bietjie na Bewegende Gemiddeldes: Wat is dit) Eenvoudige bewegende gemiddelde (SMA) Eenvoudige bewegende gemiddeldes is die voorkeur-metode vir die dop van markpryse, want hulle is vinnig om te bereken en maklik om te verstaan. Vroeë mark praktisyns bedryf word sonder die gebruik van die gesofistikeerde grafiek statistieke in gebruik vandag, sodat hulle staatgemaak hoofsaaklik op markpryse as hul uitsluitlike gidse. Hulle bereken markpryse met die hand, en weergegee daardie pryse te tendense en die mark rigting aan te dui. Hierdie proses was nogal vervelig, maar bewys baie winsgewend met bevestiging van verdere studies. Om 'n 10-dag eenvoudig bewegende gemiddelde te bereken, net voeg die sluitingsdatum pryse van die afgelope 10 dae en deel dit deur 10. Die 20-dae - bewegende gemiddelde word bereken deur die sluiting pryse oor 'n tydperk van 20 dae en deel dit deur 20, en so aan. Hierdie formule is nie net gebaseer op sluitingstyd pryse, maar die produk is 'n gemiddelde van pryse - 'n subset. Bewegende gemiddeldes is genoem beweeg omdat die groep pryse wat in die berekening skuif na gelang van die punt op die grafiek. Dit beteken ou dae is ten gunste van nuwe sluitingsprys dae gedaal, sodat 'n nuwe berekening altyd nodig wat ooreenstem met die tyd van die gemiddelde diens. So, is 'n 10-dag gemiddelde herbereken deur die toevoeging van die nuwe dag en die weglating van die 10de dag, en die negende dag laat val op die tweede dag. (Vir meer inligting oor hoe kaarte word gebruik in valuta handel, kyk na ons Chart Basics Walk.) Eksponensiële bewegende gemiddelde (EMA) Die eksponensiële bewegende gemiddelde het verfyn en meer algemeen gebruik word sedert die 1960's, danksy vroeër praktisyns eksperimente met die rekenaar. Die nuwe EMO sal meer oor die mees onlangse pryse fokus eerder as op 'n lang reeks van data punte, soos die eenvoudige bewegende gemiddelde vereis. Huidige EMO ((Prys (huidige) - vorige EMO)) X vermenigvuldiger) vorige EMO. Die belangrikste faktor is die glad konstante dat 2 / (1 N) waar N die aantal dae. 'N 10-dag EMO 2 / (101) 18.8 Dit beteken 'n 10-tydperk EMO gewigte die mees onlangse prys 18.8, 'n 20-dag EMO 9,52 en 50-dag EMO 3,92 gewig op die mees onlangse dag. Die EMO werk bereken deur die verskil tussen die huidige tye prys en die vorige EMO, en die toevoeging van die resultaat van die vorige EMO. Hoe korter die tydperk, hoe meer gewig toegepas op die mees onlangse prys. Pas Lines Deur hierdie berekeninge, is punte geplot, die onthulling van 'n gepaste lyn. Pas lyne bo of onder die markprys aan te dui dat alle bewegende gemiddeldes is agter aanwysers. en is hoofsaaklik gebruik word vir volgende tendense. Hulle hoef goed te werk met verskeie markte en periodes van opeenhoping omdat die pas lyne versuim om 'n tendens dui as gevolg van 'n gebrek aan duidelik hoër hoogtes of laer laagtepunte. Plus, pas lyne is geneig konstant bly sonder aanduiding van rigting. 'N stygende pas lyn onder die mark te kenne dat 'n lang, terwyl 'n dalende pas lyn bo die mark te kenne dat 'n kort. (Vir 'n volledige gids, lees ons Moving Gemiddelde handleiding.) Die doel van die gebruik van 'n eenvoudige bewegende gemiddelde is om raak te sien en te meet tendense deur glad die data met behulp van die middel van verskeie groepe van pryse. 'N tendens is raakgesien en geëkstrapoleer tot 'n skatting. Die veronderstelling is dat voor tendens bewegings sal voortgaan. Vir die eenvoudige bewegende gemiddelde, kan 'n langtermyn-tendens gevind en gevolg veel makliker as 'n EMO, met 'n redelike aanname dat die pas lyn sterker as 'n EMO lyn sal hou as gevolg van die langer fokus op gemiddelde pryse. 'N EMO gebruik word om korter tendens beweeg vang, te danke aan die fokus op mees onlangse pryse. Deur hierdie metode, 'n EMO veronderstel om enige lags in die eenvoudige bewegende gemiddelde verminder sodat die gepaste lyn pryse nader as 'n eenvoudige bewegende gemiddelde sal omhels. Die probleem met die EMO is dit: Die geneig om prys breek, veral tydens vinnig markte en periodes van onbestendigheid. Die EMO werk goed totdat pryse breek die gepaste lyn. Tydens hoër wisselvalligheid markte, kan jy kyk na die verhoging van die lengte van die bewegende gemiddelde termyn. 'N Mens kan selfs skakel van 'n EMO 'n SMA, aangesien die SMA stryk uit die data baie beter as 'n EMO as gevolg van sy fokus op langer termyn beteken. Tendens-volgende aanduiders Soos sloerende aanwysers, bewegende gemiddeldes te dien asook ondersteuning en weerstand lyne. As pryse te breek onder 'n 10-dag pas lyn in 'n opwaartse neiging, is die kanse is goed dat die opwaartse neiging kan afneem, of ten minste die mark kan konsolideer. As pryse te breek bo 'n 10-dae bewegende gemiddelde in 'n verslechtering neiging. die tendens kan wees besig om te kwyn of te konsolideer. In hierdie gevalle, gebruik 'n 10- en 20- daagse bewegende gemiddelde saam, en wag vir die 10-dae reël om bo of onder die 20-dag lyn oor te steek. Dit bepaal die volgende kort termyn rigting vir pryse. Vir tydperke langer termyn, kyk na die 100 en 200-dae - bewegende gemiddeldes vir rigting langer termyn. Byvoorbeeld, met behulp van die 100 en 200-dae - bewegende gemiddeldes, indien die 100-daagse bewegende gemiddelde kruise onder die 200-dag gemiddeld sy genoem die dood kruis. en is baie lomp vir pryse. A 100-daagse bewegende gemiddelde wat kruise bo 'n 200-daagse bewegende gemiddelde staan ​​bekend as die goue kruis. en is baie positief vir pryse. Dit maak nie saak as 'n SMA of 'n EMO gebruik word, want albei is-tendens volgende aanwysers. Sy enigste in die kort termyn wat die SMA het effense afwyking van sy eweknie, die EMO. Gevolgtrekking bewegende gemiddeldes is die basis van grafiek en tydreeksanalise. Eenvoudige bewegende gemiddeldes en die meer komplekse eksponensiële bewegende gemiddeldes te help visualiseer die tendens deur glad uit prysbewegings. Tegniese ontleding is ook soms na verwys as 'n kuns eerder as 'n wetenskap, wat albei jare neem om te bemeester. (Hier is meer in ons Tegniese Analise handleiding.) Eksponensiële Smoothing verduidelik word. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Wanneer mense eers die term Eksponensiële Smoothing teëkom kan hulle dink dit klink soos 'n hel van 'n baie glad. alles glad is. Hulle het toe begin om 'n ingewikkelde wiskundige berekening wat waarskynlik vereis 'n graad in wiskunde te verstaan ​​voor oë, en ek hoop daar is 'n ingeboude EXCEL funksie beskikbaar indien hulle ooit nodig het om dit te doen. Die realiteit van eksponensiële gladstryking is veel minder dramatiese en baie minder traumaties. Die waarheid is, eksponensiële gladstryking is 'n baie eenvoudige berekening wat 'n redelik eenvoudige taak accomplishes. Dit het net 'n ingewikkelde naam want wat tegnies gebeur as gevolg van hierdie eenvoudige berekening is eintlik 'n bietjie ingewikkeld. Om eksponensiële gladstryking verstaan, help dit om te begin met die algemene konsep van glad en 'n paar ander algemene metodes wat gebruik word om glad te bereik. Wat is glad Smoothing is 'n baie algemene statistiese proses. Trouens, ons gereeld reëlmatige data in verskeie vorme in ons dag-tot-dag lewe teëkom. Enige tyd wat jy 'n gemiddelde gebruik om iets te beskryf, gebruik jy 'n reëlmatige nommer. As jy dink oor die rede waarom jy 'n gemiddelde gebruik om iets te beskryf, sal jy vinnig verstaan ​​die konsep van gladstryking. Byvoorbeeld, ons het net ervaar die warmste winter op rekord. Hoe is ons in staat was om te kwantifiseer hierdie Wel ons begin met datastelle van die daaglikse hoë en lae temperature vir die tydperk wat ons Winter bel vir elke jaar in die geskiedenis. Maar dit laat ons met 'n klomp van die nommers wat spring om nogal 'n bietjie (sy nie soos elke dag hierdie winter was warmer as die ooreenstemmende dae vanaf alle vorige jaar). Ons moet 'n getal wat al hierdie spring rond verwyder uit die data, sodat ons kan makliker vergelyk een winter na die volgende. Die verwydering van die spring rond in die data heet glad, en in hierdie geval kan ons net gebruik om 'n eenvoudige gemiddelde tot die smoothing bereik. In vraag vooruitskatting, gebruik ons ​​glad ewekansige variasie (geraas) van ons historiese vraag te verwyder. Dit stel ons in staat om die vraag patrone (hoofsaaklik tendens en seisoenaliteit) en vlakke vraag wat gebruik kan word om toekomstige vraag te skat beter te identifiseer. Die geraas in die vraag is dieselfde konsep as die daaglikse spring rond van die temperatuur data. Nie verrassend nie, die mees algemene manier waarop mense verwyder geraas uit die geskiedenis vraag is om 'n eenvoudige averageor meer spesifiek gebruik, 'n bewegende gemiddelde. 'N bewegende gemiddelde net gebruik 'n vooraf gedefinieerde aantal periodes om die gemiddelde te bereken, en diegene periodes beweeg met verloop van tyd. Byvoorbeeld, as Im met behulp van 'n 4-maand bewegende gemiddelde, en vandag is 1 Mei, Im met behulp van 'n gemiddeld van vraag wat plaasgevind het in Januarie, Februarie, Maart en April. Op 1 Junie sal ek wees met behulp van die vraag vanaf Februarie, Maart, April en Mei. Geweegde bewegende gemiddelde. By die gebruik van 'n gemiddelde ons aansoek doen dieselfde belangrikheid (gewig) aan elke waarde in die datastel. In die 4-maand bewegende gemiddelde, elke maand verteenwoordig 25 van die bewegende gemiddelde. By die gebruik van die geskiedenis vraag na die toekomstige vraag (en veral toekomstige tendens) - projek, sy logiese om tot die gevolgtrekking gekom dat jy wil graag meer onlangse geskiedenis 'n groter impak op jou voorspelling het gekom. Ons kan ons bewegende gemiddelde berekening te pas by verskillende gewigte van toepassing op elke tydperk aan ons gewenste resultate te kry. Ons spreek hierdie gewigte as persentasies, en die totaal van alle gewigte vir alle tye moet tot 100. Daarom voeg, as ons besluit ons wil aansoek doen 35 as die gewig vir die naaste tydperk in ons 4 maande geweeg bewegende gemiddelde, ons kan aftrek 35 van 100 om uit te vind ons het 65 oorblywende om verdeeld oor die ander 3 periodes. Byvoorbeeld, kan ons uiteindelik met 'n gewig van 15, 20, 30, en 35 onderskeidelik vir die 4 maande (15 20 30 35 100). Eksponensiële gladstryking. As ons teruggaan na die konsep van die toepassing van 'n gewig aan die mees onlangse tydperk (soos 35 in die vorige voorbeeld) en die verspreiding van die oorblywende gewig (bereken deur die mees onlangse tydperk gewig van 35 uit 100 te kry 65), het ons die basiese boustene vir ons eksponensiële gladstryking berekening. Die beheer van insette van die eksponensiële gladstryking berekening staan ​​bekend as die smoothing faktor (ook bekend as die glad konstante). Dit verteenwoordig in wese die toepassing op die mees onlangse vraag tydperke gewig. So, waar ons gebruik 35 as die gewig vir die mees onlangse tydperk in die geweegde bewegende gemiddelde berekening, kan ons ook kies om te gebruik 35 as die glad faktor in ons eksponensiële gladstryking berekening om 'n soortgelyke effek te kry. Die verskil met die eksponensiële gladstryking berekening is dat in plaas van ons om te ook uit te vind hoeveel gewig om aansoek te doen om elke vorige tydperk, die smoothing faktor is wat gebruik word om dit outomaties te doen. So hier kom die eksponensiële deel. As ons gebruik 35 as die glad faktor, sal die gewig van die mees onlangse vraag tydperke wees 35. Die gewig van die volgende mees onlangse vraag tydperke (die tydperk voor die mees onlangse) sal wees 65 van 35 (65 kom van aftrekking 35 van 100). Dit is gelykstaande aan 22,75 gewig vir daardie tydperk as jy die wiskunde te doen. Die volgende mees onlangse vraag tydperke sal wees 65 van 65 van 35, wat gelykstaande is aan 14,79. Die tydperk voor daardie gelaai sal word as 65 van 65 van 65 van 35, wat gelykstaande is aan 9,61, en so aan. En dit gaan oor terug deur al jou vorige tydperke al die pad terug na die begin van tyd (of die punt waar jy begin het met behulp van eksponensiële gladstryking vir daardie spesifieke item). Julle waarskynlik dink dis lyk soos 'n hele klomp van die wiskunde. Maar die skoonheid van die eksponensiële gladstryking berekening is dat eerder as om te herbereken teen mekaar vorige tydperk elke keer as jy 'n nuwe tydperke vraag te kry, moet jy eenvoudig die opbrengs van die eksponensiële gladstryking berekening gebruik van die vorige tydperk tot alle vorige tydperke verteenwoordig. Is jy verward nog Dit sal meer sin maak as ons kyk na die werklike berekening Tipies verwys ons na die uitset van die eksponensiële gladstryking berekening as die volgende tydperk skatting. In werklikheid, die uiteindelike voorspelling moet 'n bietjie meer werk nie, maar vir die doeleindes van hierdie spesifieke berekening, sal ons daarna verwys as die skatting. Die eksponensiële gladstryking berekening is soos volg: Die mees onlangse tye vra om 'vermenigvuldig met die smoothing faktor. PLUS Die mees onlangse tye voorspel vermenigvuldig met (een minus die smoothing faktor). D mees onlangse tydperke eis S die glad faktor wat in desimale vorm (so 35 sal verteenwoordig as 0.35). F die mees onlangse tye voorspel (die opbrengs van die smoothing berekening van die vorige tydperk). OF (met die aanvaarding 'n glad faktor van 0.35) (D 0.35) (F 0,65) Dit nie die geval kry baie makliker as dit. Soos jy kan sien, al wat ons nodig het vir data insette hier is die mees onlangse tydperke vraag en die mees onlangse tye voorspel. Ons pas die smoothing faktor (gewig) tot die mees onlangse tye op dieselfde manier sou ons in die geweegde bewegende gemiddelde berekening te eis. Ons het toe pas die oorblywende gewig (1 minus die smoothing faktor) om die mees onlangse tye voorspel. Sedert die mees onlangse tye voorspel is gemaak op grond van die vorige tydperke vraag en die vorige tydperke voorspel, wat gebaseer was op die vraag na die tydperk voor daardie en die voorspelling vir die tydperk voor dit, wat gebaseer was op die vraag na die tydperk voor dat en die voorspelling vir die tydperk voor dit, wat gebaseer is op die tydperk voor daardie. Wel, kan jy sien hoe alle vorige tydperke vraag word in die berekening sonder om werklik terug te gaan en iets herbereken. En dis wat gery die aanvanklike gewildheid van eksponensiële gladstryking. Dit was nie omdat dit nie 'n beter werk van glad as geweegde bewegende gemiddelde, was dit omdat dit makliker om te bereken in 'n rekenaarprogram was. En, omdat jy didnt nodig om te dink oor wat gewig te vorige tydperke of hoeveel vorige tydperke te gebruik gee, soos jy sou in geweegde bewegende gemiddelde. En, omdat dit net geklink koeler as geweegde bewegende gemiddelde. Trouens, dit kan aangevoer word dat geweegde bewegende gemiddelde bied groter buigsaamheid want jy het meer beheer oor die gewig van vorige tydperke. Die realiteit is een van hierdie kan gerespekteerde resultate lewer nie, so hoekom nie saam met makliker en koeler klinkende. Eksponensiële Smoothing in Excel Kom ons kyk hoe dit eintlik sou lyk in 'n sigblad met werklike data. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. In Figuur 1A, ons het 'n Excel spreiblad met 11 weke van die vraag, en 'n eksponensieel stryk voorspelling bereken vanaf daardie vraag. Ive gebruik 'n glad faktor van 25 (0.25 in sel C1). Die huidige aktiewe sel is Cell M4 wat die voorspelling vir week 12. Jy kan sien in die formule bar, die formule is (L3C1) (L4 (1-C1)) bevat. Dus is die enigste direkte insette tot hierdie berekening is die vorige tydperke vraag (Cell V3), die vorige tydperke voorspel (Cell L4), en die smoothing faktor (Cell C1, getoon as absolute selverwysing C1). Wanneer ons begin 'n eksponensiële gladstryking berekening, moet ons die waarde hand prop vir die 1ste skatting. So in Cell B4, eerder as om 'n formule, ons het net getik in die vraag van wat in dieselfde tydperk as die skatting. In Cell C4 het ons 1 eksponensiële gladstryking berekening (B3C1) (B4 (1-C1)). Ons kan dan kopieer Cell C4 en plak dit in die selle D4 deur M4 om die res van ons vooruitskatting selle te vul. Jy kan nou dubbel-kliek op 'n voorspelling sel om te sien dit is gebaseer op die vorige tydperke voorspel sel en die vorige tydperke te eis sel. So elke daaropvolgende eksponensiële gladstryking berekening erf die uitset van die vorige eksponensiële gladstryking berekening. Dis hoe elke vorige tydperke vraag word in die mees onlangse berekening tydperke alhoewel dit berekening diegene vorige tydperke nie direk verwys. As jy wil fancy te kry, kan jy uitblink spoor presedente funksie gebruik. Om dit te doen, klik op Cell M4, dan op die lint nutsbalk (Excel 2007 of 2010) op die blad Formules, kliek Trace Presedente. Dit sal connector lyne te vestig op die 1ste vlak van presedente, maar as jy hou kliek Trace Presedente sal dit connector lyne om alle vorige tydperke te trek om jou te wys die geërf verhoudings. Nou kan sien wat eksponensiële gladstryking vir ons gedoen het. Figuur 1 B toon 'n grafiek van ons eis en skatting. Jy geval sien hoe die eksponensieel stryk voorspelling verwyder die meeste van die jaggedness (die spring rond) van die weeklikse vraag, maar steeds daarin slaag om te volg wat lyk na 'n opwaartse neiging in die vraag wees. Jy sal ook agterkom dat die reëlmatige voorspelling lyn geneig laer as die vraag lyn te wees. Dit staan ​​bekend as tendens lag en is 'n newe-effek van die smoothing proses. Enige tyd wat jy glad gebruik wanneer 'n tendens teenwoordig is jou voorspelling sal agter die tendens. Dit is waar vir enige glad tegniek. Trouens, as ons hierdie sigblad voort en begin skryf laer vraag nommers ( 'n afwaartse neiging) jy sou die vraag lyn val, en die tendens lyn skuif bo dit voor die aanvang van die afwaartse neiging volg sien. Dis hoekom ek voorheen genoem die uitset van die eksponensiële gladstryking berekening dat ons 'n voorspelling te roep, moet nog 'n paar meer werk. Daar is 'n baie meer om vooruitskatting as net glad uit die knoppe in aanvraag. Ons moet bykomende aanpassings vir dinge soos tendens lag, seisoenaliteit, bekend gebeure wat die vraag, ens kan bewerkstellig Maar alles wat buite die bestek van hierdie artikel maak. Jy sal waarskynlik ook loop in terme soos dubbel-eksponensiële gladstryking en trippel-eksponensiële gladstryking. Hierdie terme is 'n bietjie misleidend aangesien jy nie weer glad die vraag meer as een keer (jy kan as jy wil, maar dis nie die punt hier). Hierdie terme verteenwoordig met behulp van eksponensiële gladstryking op bykomende elemente van die skatting. So met 'n eenvoudige eksponensiële gladstryking, is jy glad die vraag basis, maar met 'n dubbele-eksponensiële gladstryking jy glad die vraag basis plus die tendens, en met drie-eksponensiële gladstryking jy glad die vraag basis plus die tendens plus die seisoen. Die ander mees algemene vraag oor eksponensiële gladstryking is waar kry ek my glad faktor Daar is geen magiese antwoord hier, moet jy verskeie glad faktore toets met jou vraag data om te sien wat jy kry die beste resultate. Daar is berekeninge wat outomaties kan stel (en verandering) die smoothing faktor. Hierdie val onder die term aanpasbaar glad nie, maar jy moet versigtig wees om met hulle te wees. Daar is eenvoudig geen perfekte antwoord en jy moet nie blindelings te implementeer enige berekening sonder deeglike toetsing en ontwikkeling van 'n deeglike begrip van wat dit berekening doen. Jy moet ook hardloop what-if scenario's om te sien hoe hierdie berekeninge te reageer op veranderinge wat nog nie op die oomblik kan bestaan ​​in die vraag data wat jy gebruik vir die toets te eis. Die data voorbeeld wat ek voorheen gebruik is 'n baie goeie voorbeeld van 'n situasie waar jy regtig nodig het om 'n ander scenario's te toets. Daardie spesifieke data voorbeeld toon 'n ietwat konsekwent opwaartse neiging. Baie groot maatskappye met baie duur vooruitskatting sagteware het in groot moeilikheid in die nie-so-verre verlede toe hulle sagteware instellings wat tweaked vir 'n groeiende ekonomie didnt goed reageer wanneer die ekonomie begin stagneer of krimp. Dinge soos dit gebeur wanneer jy dit nie verstaan ​​wat jou berekeninge (sagteware) is eintlik. As hulle hul vooruitskatting stelsel verstaan, sou hulle geweet het wat hulle nodig het om in te spring en iets te verander wanneer daar skielike dramatiese veranderinge aan hul besigheid. So daar het jy dit die basiese beginsels van die eksponensiële gladstryking verduidelik. Wil jy meer oor die gebruik van eksponensiële gladstryking in 'n werklike vooruitsig, check out my boek Inventory Management Hoe weet. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Dave Piasecki. is eienaar / operateur van Inventory Bedryf Consulting LLC. 'n raadgewende firma die verskaffing van dienste wat verband hou met voorraad beheer, materiaal hantering, en pakhuis bedrywighede. Hy het meer as 25 jaar ondervinding in die operasionele bestuur en kan bereik word deur middel van sy webwerf (www. inventoryops), waar hy verdere relevante inligting handhaaf. My BusinessMarket Data Vrae Eksponensiële Versus Eenvoudige bewegende gemiddeldes Hi Tom - Ek is 'n intekenaar van joune en het gewonder of jy 'n ldquoconversionrdquo grafiek vir die omskakeling tendens waarde in tydperk eksponensiële MA gehad. byvoorbeeld, 10 Trend is rofweg gelykstaande aan 'n 19-tydperk EMO, 1 tendens 200EMA ens Dankie by voorbaat. Die formule vir die omskakeling van 'n eksponensiële bewegende gemiddelde (EMA) glad konstante 'n aantal dae is: 2 mdashmdashmdash - N 1 waar n die aantal dae. Dus, sou 'n 19-dag EMO pas in die formule soos volg: 2 2 mdashmdashmdashmdash - mdashmdashmdash - 0.10, of 10 19 1 20 Dit spruit uit die idee dat die glad konstante gekies ten einde dieselfde gemiddelde ouderdom van die data gee as sou moes in 'n eenvoudige bewegende gemiddelde. As jy 'n 20 tydperk eenvoudige bewegende gemiddelde het, dan is die gemiddelde ouderdom van elke data insette is 9.5. Mens sou dink dat die gemiddelde ouderdom 10 moet wees, want dit is die helfte van 20, of 10,5 want dit is die gemiddeld van die getalle 1 tot 20. Maar in statistiese konvensie, die ouderdom van die mees onlangse stukkie data is 0. So vind die gemiddelde ouderdom van die afgelope twintig datapunte word gedoen deur die vind van die gemiddelde van hierdie reeks: So het die gemiddelde ouderdom van data in 'n stel van n periodes gegee word: n - 1 mdashmdashmdashmdash - 2 Vir eksponensiële gladstryking, met 'n glad konstante van 'n dit blyk uit die wiskunde van opsomming teorie dat die gemiddelde ouderdom van die data is: 1 - 'n mdashmdashmdashmdash - n Kombinasie van hierdie twee vergelykings: 1 - 'n - 1 mdashmdashmdash mdashmdashmdashmdash a 2 ons kan los vir 'n waarde van a wat 'n gelykstaande EMO 'n eenvoudige bewegende gemiddelde lengte as: 2 a mdashmdashmdashmdash - n 1 Jy kan een van die oorspronklike stukke ooit oor hierdie konsep deur te gaan na McClellanMTAaward. pdf geskryf lees. Daar het ons uittreksel uit P. N. Haurlanrsquos pamflet, ldquoMeasuring Trend Valuesrdquo. Haurlan was een van die eerste mense om eksponensiële bewegende gemiddeldes gebruik om aandele pryse terug in die 1960's op te spoor, en ons nog steeds verkies sy oorspronklike terme van 'n XX Trend, eerder as 'n beroep 'n eksponensiële bewegende gemiddelde deur sommige aantal dae. Een groot rede hiervoor is dat met 'n eenvoudige bewegende gemiddelde (SMA), is jy net 'n terugblik n sekere aantal dae. Enigiets ouer as wat Terugblik tydperk nie faktor in die berekening. Maar met 'n EMO, die ou data verdwyn nooit dit net al hoe minder belangrik om die waarde van die bewegende gemiddelde word. Om te verstaan ​​waarom tegnici omgee EMA versus SMAs, 'n vinnige blik op hierdie grafiek bied 'n paar 'n illustrasie van die verskil. Tydens trending beweeg opwaarts of afwaarts, sal 'n 10 tendens en 'n 19-dag SMA grootliks reg saam. Dit is in tye wanneer pryse is woelig, of wanneer die tendens rigting verander, dat ons sien die twee begin om uitmekaar te beweeg. In sulke gevalle sal die 10 Trend gewoonlik drukkie die prys aksie van naderby, en dus in 'n beter posisie om 'n verandering te dui wanneer die prys kruis nie. Vir baie mense, die eiendom maak EMA ldquobetterrdquo as SMAs, maar ldquobetterrdquo is in die oë van die waarnemer. Die rede waarom ingenieurs gebruik EMA vir die jaar, veral in elektronika, is dat hulle makliker om te bereken. Om todayrsquos nuwe EMO waarde te bepaal, jy hoef net yesterdayrsquos EMO waarde, die glad konstante, en todayrsquos nuwe sluitingsprys (of ander datum). Maar om 'n SMA bereken, moet jy elke waarde terug in die tyd vir die hele Terugblik period. Moving Gemiddeldes weet - Eenvoudige en Eksponensiële Bewegende Gemiddeldes - Eenvoudige en Eksponensiële Inleiding bewegende gemiddeldes glad die prys data om 'n tendens volgende aanwyser vorm. Hulle het nie die prys rigting voorspel nie, maar eerder die huidige rigting met 'n lag te definieer. Bewegende gemiddeldes lag omdat hulle op grond van vorige pryse. Ten spyte hiervan lag, bewegende gemiddeldes te help gladde prys aksie en filter die geraas. Hulle vorm ook die boustene vir baie ander tegniese aanwysers en overlays, soos Bollinger Bands. MACD en die McClellan Ossillator. Die twee mees populêre vorme van bewegende gemiddeldes is die Eenvoudige bewegende gemiddelde (SMA) en die eksponensiële bewegende gemiddelde (EMA). Hierdie bewegende gemiddeldes gebruik kan word om die rigting van die tendens te identifiseer of definieer potensiaal ondersteuning en weerstand vlakke. Here039s n grafiek met beide 'n SMA en 'n EMO daarop: Eenvoudige bewegende gemiddelde Berekening 'n Eenvoudige bewegende gemiddelde is wat gevorm word deur die berekening van die gemiddelde prys van 'n sekuriteit oor 'n spesifieke aantal periodes. Die meeste bewegende gemiddeldes is gebaseer op sluitingstyd pryse. 'N 5-dag eenvoudig bewegende gemiddelde is die vyf dag som van die sluiting pryse gedeel deur vyf. Soos die naam aandui, 'n bewegende gemiddelde is 'n gemiddelde wat beweeg. Ou data laat val as nuwe data kom beskikbaar. Dit veroorsaak dat die gemiddelde om te beweeg langs die tydskaal. Hieronder is 'n voorbeeld van 'n 5-daagse bewegende gemiddelde ontwikkel met verloop van drie dae. Die eerste dag van die bewegende gemiddelde dek net die laaste vyf dae. Die tweede dag van die bewegende gemiddelde daal die eerste data punt (11) en voeg die nuwe data punt (16). Die derde dag van die bewegende gemiddelde voort deur die val van die eerste data punt (12) en die toevoeging van die nuwe data punt (17). In die voorbeeld hierbo, pryse geleidelik verhoog 11-17 oor 'n totaal van sewe dae. Let daarop dat die bewegende gemiddelde styg ook 13-15 oor 'n driedaagse berekening tydperk. Let ook op dat elke bewegende gemiddelde waarde is net onder die laaste prys. Byvoorbeeld, die bewegende gemiddelde vir die eerste dag is gelyk aan 13 en die laaste prys is 15. Pryse die vorige vier dae laer was en dit veroorsaak dat die bewegende gemiddelde te lag. Eksponensiële bewegende gemiddelde Berekening eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Die gewig van toepassing op die mees onlangse prys hang af van die aantal periodes in die bewegende gemiddelde. Daar is drie stappe om die berekening van 'n eksponensiële bewegende gemiddelde. Eerstens, bereken die eenvoudige bewegende gemiddelde. 'N eksponensiële bewegende gemiddelde (EMA) moet iewers begin so 'n eenvoudige bewegende gemiddelde word gebruik as die vorige period039s EMO in die eerste berekening. Tweede, bereken die gewig vermenigvuldiger. Derde, bereken die eksponensiële bewegende gemiddelde. Die onderstaande formule is vir 'n 10-dag EMO. 'N 10-tydperk eksponensiële bewegende gemiddelde van toepassing 'n 18,18 gewig na die mees onlangse prys. 'N 10-tydperk EMO kan ook 'n 18,18 EMO genoem. A 20-tydperk EMO geld 'n 9,52 weeg om die mees onlangse prys (2 / (201) 0,0952). Let daarop dat die gewig vir die korter tydperk is meer as die gewig vir die langer tydperk. Trouens, die gewig daal met die helfte elke keer as die bewegende gemiddelde tydperk verdubbel. As jy wil ons 'n spesifieke persentasie vir 'n EMO, kan jy hierdie formule gebruik om dit te omskep in tydperke en gee dan daardie waarde as die parameter EMA039s: Hier is 'n spreadsheet voorbeeld van 'n 10-dag eenvoudig bewegende gemiddelde en 'n 10- dag eksponensiële bewegende gemiddelde vir Intel. Eenvoudige bewegende gemiddeldes is reguit vorentoe en verg min verduideliking. Die 10-dag gemiddeld net beweeg as nuwe pryse beskikbaar raak en ou pryse af te laai. Die eksponensiële bewegende gemiddelde begin met die eenvoudige bewegende gemiddelde waarde (22,22) in die eerste berekening. Na die eerste berekening, die normale formule oorneem. Omdat 'n EMO begin met 'n eenvoudige bewegende gemiddelde, sal sy werklike waarde nie besef tot 20 of so tydperke later. Met ander woorde, kan die waarde van die Excel spreadsheet verskil van die term waarde as gevolg van die kort tydperk kyk terug. Hierdie sigblad gaan net terug 30 periodes, wat beteken dat die invloed van die eenvoudige bewegende gemiddelde het 20 periodes om te ontbind het. StockCharts gaan terug ten minste 250-tydperke (tipies veel verder) vir sy berekeninge sodat die gevolge van die eenvoudige bewegende gemiddelde in die eerste berekening volledig verkwis. Die sloerfaktor Hoe langer die bewegende gemiddelde, hoe meer die lag. 'N 10-dag eksponensiële bewegende gemiddelde pryse sal baie nou omhels en draai kort ná pryse draai. Kort bewegende gemiddeldes is soos spoed bote - ratse en vinnige te verander. In teenstelling hiermee het 'n 100-daagse bewegende gemiddelde bevat baie afgelope data wat dit stadiger. Meer bewegende gemiddeldes is soos see tenkwaens - traag en stadig om te verander. Dit neem 'n groter en meer prysbewegings vir 'n 100-daagse bewegende gemiddelde kursus te verander. bo die grafiek toon die SampP 500 ETF met 'n 10-dag EMO nou na aanleiding van pryse en 'n 100-dag SMA maal hoër. Selfs met die Januarie-Februarie afname, die 100-dag SMA gehou deur die loop en nie draai. Die 50-dag SMA pas iewers tussen die 10 en 100 dae bewegende gemiddeldes wanneer dit kom by die lag faktor. Eenvoudige vs Eksponensiële Bewegende Gemiddeldes Hoewel daar duidelike verskille tussen eenvoudige bewegende gemiddeldes en eksponensiële bewegende gemiddeldes, een is nie noodwendig beter as die ander. Eksponensiële bewegende gemiddeldes minder lag en is dus meer sensitief vir onlangse pryse - en onlangse prysveranderings. Eksponensiële bewegende gemiddeldes sal draai voor eenvoudige bewegende gemiddeldes. Eenvoudige bewegende gemiddeldes, aan die ander kant, verteenwoordig 'n ware gemiddelde van die pryse vir die hele tydperk. As sodanig, kan eenvoudig bewegende gemiddeldes beter geskik wees om ondersteuning of weerstand vlakke te identifiseer. Bewegende gemiddelde voorkeur hang af van doelwitte, analitiese styl en tydhorison. Rasionele agente moet eksperimenteer met beide tipes bewegende gemiddeldes, asook verskillende tydsraamwerke om die beste passing te vind. Die onderstaande grafiek toon IBM met die 50-dag SMA in rooi en die 50-dag EMO in groen. Beide 'n hoogtepunt bereik in die einde van Januarie, maar die daling in die EMO was skerper as die afname in die SMA. Die EMO opgedaag het in die middel van Februarie, maar die SMA voortgegaan laer tot aan die einde van Maart. Let daarop dat die SMA opgedaag het meer as 'n maand nadat die EMO. Lengtes en tydsraamwerke Die lengte van die bewegende gemiddelde is afhanklik van die analitiese doelwitte. Kort bewegende gemiddeldes (20/05 periodes) is die beste geskik vir tendense en handel kort termyn. Rasionele agente belangstel in medium termyn tendense sou kies vir langer bewegende gemiddeldes wat 20-60 periodes kan verleng. Langtermyn-beleggers sal verkies bewegende gemiddeldes met 100 of meer periodes. Sommige bewegende gemiddelde lengtes is meer gewild as ander. Die 200-daagse bewegende gemiddelde is miskien die mees populêre. As gevolg van sy lengte, dit is duidelik 'n langtermyn-bewegende gemiddelde. Volgende, die 50-dae - bewegende gemiddelde is baie gewild vir die medium termyn tendens. Baie rasionele agente gebruik die 50-dag en 200-dae - bewegende gemiddeldes saam. Korttermyn, 'n 10-dae bewegende gemiddelde was baie gewild in die verlede, want dit was maklik om te bereken. Een van die nommers bygevoeg eenvoudig en verskuif die desimale punt. Tendens Identifikasie Dieselfde seine gegenereer kan word met behulp van eenvoudige of eksponensiële bewegende gemiddeldes. Soos hierbo aangedui, die voorkeur hang af van elke individu. Hierdie voorbeelde sal onder beide eenvoudige en eksponensiële bewegende gemiddeldes gebruik. Die term bewegende gemiddelde is van toepassing op beide eenvoudige en eksponensiële bewegende gemiddeldes. Die rigting van die bewegende gemiddelde dra belangrike inligting oor pryse. 'N stygende bewegende gemiddelde wys dat pryse oor die algemeen is aan die toeneem. A val bewegende gemiddelde dui daarop dat pryse gemiddeld val. 'N stygende langtermyn bewegende gemiddelde weerspieël 'n langtermyn - uptrend. A val langtermyn bewegende gemiddelde weerspieël 'n langtermyn - verslechtering neiging. bo die grafiek toon 3M (MMM) met 'n 150-dag eksponensiële bewegende gemiddelde. Hierdie voorbeeld toon hoe goed bewegende gemiddeldes werk wanneer die neiging is sterk. Die 150-dag EMO van die hand gewys in November 2007 en weer in Januarie 2008. Let daarop dat dit 'n 15 weier om die rigting van hierdie bewegende gemiddelde om te keer. Hierdie nalopend aanwysers identifiseer tendens terugskrywings as hulle voorkom (op sy beste) of nadat hulle (in die ergste geval) voorkom. MMM voortgegaan laer in Maart 2009 en daarna gestyg 40-50. Let daarop dat die 150-dag EMO nie opgedaag het nie eers na hierdie oplewing. Sodra dit gedoen het, maar MMM voortgegaan hoër die volgende 12 maande. Bewegende gemiddeldes werk briljant in sterk tendense. Double CROSSOVER twee bewegende gemiddeldes kan saam gebruik word om crossover seine op te wek. In tegniese ontleding van die finansiële markte. John Murphy noem dit die dubbele crossover metode. Double CROSSOVER behels een relatief kort bewegende gemiddelde en een relatiewe lang bewegende gemiddelde. Soos met al die bewegende gemiddeldes, die algemene lengte van die bewegende gemiddelde definieer die tydraamwerk vir die stelsel. 'N Stelsel met behulp van 'n 5-dag EMO en 35-dag EMO sal geag kort termyn. 'N Stelsel met behulp van 'n 50-dag SMA en 200-dag SMA sal geag medium termyn, miskien selfs 'n lang termyn. N bullish crossover vind plaas wanneer die korter bewegende gemiddelde kruise bo die meer bewegende gemiddelde. Dit is ook bekend as 'n goue kruis. N lomp crossover vind plaas wanneer die korter bewegende gemiddelde kruise onder die meer bewegende gemiddelde. Dit staan ​​bekend as 'n dooie kruis. Bewegende gemiddelde CROSSOVER produseer relatief laat seine. Na alles, die stelsel werk twee sloerende aanwysers. Hoe langer die bewegende gemiddelde periodes, hoe groter is die lag in die seine. Hierdie seine werk groot wanneer 'n goeie tendens vat. Dit sal egter 'n bewegende gemiddelde crossover stelsel baie whipsaws produseer in die afwesigheid van 'n sterk tendens. Daar is ook 'n driedubbele crossover metode wat drie bewegende gemiddeldes behels. Weereens, is 'n sein gegenereer wanneer die kortste bewegende gemiddelde kruisies die twee langer bewegende gemiddeldes. 'N Eenvoudige trippel crossover stelsel kan 5-dag, 10-dag en 20-dae - bewegende gemiddeldes te betrek. bo die grafiek toon Home Depot (HD) met 'n 10-dag EMO (groen stippellyn) en 50-dag EMO (rooi lyn). Die swart lyn is die daaglikse naby. Met behulp van 'n bewegende gemiddelde crossover gevolg sou gehad het drie whipsaws voor 'n goeie handel vang. Die 10-dag EMO gebreek onder die 50-dag EMO die einde van Oktober (1), maar dit het nie lank as die 10-dag verhuis terug bo in die middel van November (2). Dit kruis duur langer, maar die volgende lomp crossover in Januarie (3) het plaasgevind naby die einde van November prysvlakke, wat lei tot 'n ander geheel verslaan. Dit lomp kruis het nie lank geduur as die 10-dag EMO terug bo die 50-dag 'n paar dae later (4) verskuif. Na drie slegte seine, die vierde sein voorafskaduwing n sterk beweeg as die voorraad oor 20. gevorderde Daar is twee wegneemetes hier. In die eerste plek CROSSOVER is geneig om geheel verslaan. 'N Prys of tyd filter toegepas kan word om te voorkom dat whipsaws. Handelaars kan die crossover vereis om 3 dae duur voordat waarnemende of vereis dat die 10-dag EMO hierbo beweeg / onder die 50-dag EMO deur 'n sekere bedrag voor waarnemende. In die tweede plek kan MACD gebruik word om hierdie CROSSOVER identifiseer en te kwantifiseer. MACD (10,50,1) sal 'n lyn wat die verskil tussen die twee eksponensiële bewegende gemiddeldes te wys. MACD draai positiewe tydens 'n goue kruis en negatiewe tydens 'n dooie kruis. Die persentasie Prys ossillator (PPO) kan op dieselfde manier gebruik word om persentasie verskille te wys. Let daarop dat die MACD en die PPO is gebaseer op eksponensiële bewegende gemiddeldes en sal nie ooreen met eenvoudige bewegende gemiddeldes. Hierdie grafiek toon Oracle (ORCL) met die 50-dag EMO, 200-dag EMO en MACD (50,200,1). Daar was vier bewegende gemiddelde CROSSOVER oor 'n tydperk 2 1/2 jaar. Die eerste drie gelei tot whipsaws of slegte ambagte. A opgedoen tendens begin met die vierde crossover as ORCL gevorder tot die middel van die 20s. Weereens, bewegende gemiddelde CROSSOVER werk groot wanneer die neiging is sterk, maar produseer verliese in die afwesigheid van 'n tendens. Prys CROSSOVER bewegende gemiddeldes kan ook gebruik word om seine met 'n eenvoudige prys CROSSOVER genereer. N bullish sein gegenereer wanneer pryse beweeg bo die bewegende gemiddelde. N lomp sein gegenereer wanneer pryse beweeg onder die bewegende gemiddelde. Prys CROSSOVER kan gekombineer word om handel te dryf in die groter tendens. Hoe langer bewegende gemiddelde gee die toon aan vir die groter tendens en die korter bewegende gemiddelde word gebruik om die seine te genereer. 'N Mens sou kyk vir bullish prys kruise net vir pryse is reeds bo die meer bewegende gemiddelde. Dit sou wees die handel in harmonie met die groter tendens. Byvoorbeeld, as die prys is hoër as die 200-daagse bewegende gemiddelde, rasionele agente sal net fokus op seine wanneer prysbewegings bo die 50-dae - bewegende gemiddelde. Dit is duidelik dat, sou 'n skuif onder die 50-dae - bewegende gemiddelde so 'n sein voorafgaan, maar so lomp kruise sou word geïgnoreer omdat die groter tendens is up. N lomp kruis sou net dui op 'n nadeel binne 'n groter uptrend. 'N kruis terug bo die 50-dae - bewegende gemiddelde sou 'n opswaai in pryse en voortsetting van die groter uptrend sein. Die volgende grafiek toon Emerson Electric (EMR) met die 50-dag EMO en 200-dag EMO. Die voorraad bo verskuif en bo die 200-daagse bewegende gemiddelde gehou in Augustus. Daar was dips onder die 50-dag EMO vroeg in November en weer vroeg in Februarie. Pryse het vinnig terug bo die 50-dag EMO te lomp seine (groen pyle) voorsien in harmonie met die groter uptrend. MACD (1,50,1) word in die aanwyser venster te prys kruise bo of onder die 50-dag EMO bevestig. Die 1-dag EMO is gelyk aan die sluitingsprys. MACD (1,50,1) is positief wanneer die naby is bo die 50-dag EMO en negatiewe wanneer die einde is onder die 50-dag EMO. Ondersteuning en weerstand bewegende gemiddeldes kan ook dien as ondersteuning in 'n uptrend en weerstand in 'n verslechtering neiging. 'N kort termyn uptrend kan ondersteuning naby die 20-dag eenvoudig bewegende gemiddelde, wat ook gebruik word in Bollinger Bands vind. 'N langtermyn-uptrend kan ondersteuning naby die 200-dag eenvoudig bewegende gemiddelde, wat is die mees gewilde langtermyn bewegende gemiddelde vind. As Trouens, die 200-daagse bewegende gemiddelde ondersteuning of weerstand bloot omdat dit so algemeen gebruik word aan te bied. Dit is amper soos 'n self-fulfilling prophecy. bo die grafiek toon die NY Saamgestelde met die 200-dag eenvoudig bewegende gemiddelde van middel 2004 tot aan die einde van 2008. Die 200-dag voorsien ondersteuning talle kere tydens die vooraf. Sodra die tendens omgekeer met 'n dubbele top ondersteuning breek, die 200-daagse bewegende gemiddelde opgetree as weerstand rondom 9500. Moenie verwag presiese ondersteuning en weerstand vlakke van bewegende gemiddeldes, veral langer bewegende gemiddeldes. Markte word gedryf deur emosie, wat hulle vatbaar vir overschrijdingen maak. In plaas van presiese vlakke, kan bewegende gemiddeldes gebruik word om ondersteuning of weerstand sones identifiseer. Gevolgtrekkings Die voordele van die gebruik bewegende gemiddeldes moet opgeweeg word teen die nadele. Bewegende gemiddeldes is tendens volgende, of nalopend, aanwysers wat altyd 'n stap agter sal wees. Dit is nie noodwendig 'n slegte ding al is. Na alles, die neiging is jou vriend en dit is die beste om handel te dryf in die rigting van die tendens. Bewegende gemiddeldes te verseker dat 'n handelaar is in ooreenstemming met die huidige tendens. Selfs al is die tendens is jou vriend, sekuriteite spandeer 'n groot deel van die tyd in die handel reekse, wat bewegende gemiddeldes ondoeltreffend maak. Sodra 'n tendens, sal bewegende gemiddeldes jy hou in nie, maar ook gee laat seine. Don039t verwag om te verkoop aan die bokant en koop aan die onderkant met behulp van bewegende gemiddeldes. Soos met die meeste tegniese ontleding gereedskap, moet bewegende gemiddeldes nie gebruik word op hul eie, maar in samewerking met ander aanvullende gereedskap. Rasionele agente kan gebruik bewegende gemiddeldes tot die algehele tendens definieer en gebruik dan RSI om oorkoop of oorverkoop vlakke te definieer. Toevoeging van bewegende gemiddeldes te StockCharts Charts bewegende gemiddeldes is beskikbaar as 'n prys oortrek funksie op die SharpCharts werkbank. Die gebruik van die Overlays aftrekkieslys, kan gebruikers kies óf 'n eenvoudige bewegende gemiddelde of 'n eksponensiële bewegende gemiddelde. Die eerste parameter word gebruik om die aantal tydperke stel. 'N opsionele parameter kan bygevoeg word om te spesifiseer watter prys veld moet gebruik word in die berekeninge - O vir die Ope, H vir die High, L vir die lae, en C vir die buurt. 'N Komma word gebruik om afsonderlike parameters. Nog 'n opsionele parameter kan bygevoeg word om die bewegende gemiddeldes te skuif na links (verlede) of regs (toekomstige). 'N negatiewe getal (-10) sou die bewegende gemiddelde skuif na links 10 periodes. 'N Positiewe nommer (10) sou die bewegende gemiddelde na regs skuif 10 periodes. Veelvuldige bewegende gemiddeldes kan oorgetrek die prys plot deur eenvoudig 'n ander oortrek lyn aan die werkbank. StockCharts lede kan die kleure en styl verander om te onderskei tussen verskeie bewegende gemiddeldes. Na die kies van 'n aanduiding, oop Advanced Options deur te kliek op die klein groen driehoek. Gevorderde Opsies kan ook gebruik word om 'n bewegende gemiddelde oortrek voeg tot ander tegniese aanwysers soos RSI, CCI, en Deel. Klik hier vir 'n lewendige grafiek met 'n paar verskillende bewegende gemiddeldes. Die gebruik van bewegende gemiddeldes met StockCharts skanderings Hier is 'n paar monster skanderings wat StockCharts lede kan gebruik om te soek na verskeie bewegende gemiddelde situasies: Bul bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n stygende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5 - Day EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde is stygende solank dit handel bo sy vlak vyf dae gelede. N bullish kruis vind plaas wanneer die 5-dag EMO bo die 35-dag EMO op bogemiddelde volume beweeg. Lomp bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n dalende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5-dag EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde val solank dit handel onder sy vlak vyf dae gelede. N lomp kruis vind plaas wanneer die 5-dag EMO beweeg onder die 35-dag EMO op bogemiddelde volume. Verdere Studie John Murphy039s boek het 'n hoofstuk gewy aan bewegende gemiddeldes en hul onderskeie gebruike. Murphy dek die voor - en nadele van bewegende gemiddeldes. Daarbenewens Murphy wys hoe bewegende gemiddeldes met Bollinger Bands en kanaal gebaseer handel stelsels. Tegniese ontleding van die finansiële markte John Murphy


No comments:

Post a Comment